230

Acta Cryst. (1978). A34, 230-241

Pairs in P2,: Probability Distributions which Lead to Unique Estimates of the Two-Phase
Structure Seminvariants in the Interval (—7,7)
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(Received 16 May 1977; accepted 17 August 1977)

Conditional probability distributions of the two-phase structure seminvariant @, = @pu, —

Drykiy

in P2,, given the values of one or more two-phase structure seminvariants, as well as appropriately
chosen sets of structure factor magnitudes |E|, are derived. These distributions yield unique and
reliable estimates, in the whole interval (—m,m), of the values of these seminvariants. In the case
that a given structure seminvariant specifies the enantiomorph, the values of the remaining semin-
variants are consistent with this choice of enantiomorph. In any event, the variance of any distri-
bution of the kind described here is much smaller, in favorable cases, than that of a distribution
which assumes as known magnitudes |E| alone, reflecting the fact that previously derived phase
information severely limits the possible values of other phases.

1. Introduction

The linear combination of the two phases

D12 = Oty — Phakir (1.1)
is a structure seminvariant if
(h, — hy 0,1, — 1) =0 (mod w,), (1.2)

where w,, the seminvariant modulus in P2, is defined

by
w, = (2,0,2). (1.3)

In two previous papers (Green & Hauptman, 1978;
Hauptman & Green 1978), estimates for ¢,, were
obtained from conditional probability distributions
derived on the basis that selected sets of magnitudes
|El, the neighborhoods of ¢,,, were known. In the first
paper (Green & Hauptman, 1978) it was shown that,
given the magnitudes in any neighborhood of the first
kind, estimates of ¢, in the vicinity of 0 or z could
be reliably determined. In the second paper (Hauptman
& Green, 1978) it was demonstrated that, given the
magnitudes in any neighborhood of the second kind,
reliable, but ambiguous estimates of ¢,, ~ *n/2
could, in favorable cases, be found; the enantiomorph
is then specified by choosing arbitrarily the sign of one
such estimate. These two papers leave unanswered two
related questions: Can the presumed known values of
one or more two-phase seminvariants be used to
estimate reliably the value of a related seminvariant,
the initial estimate of which, based on known values
of magnitudes |E!| alone, was unreliable? Secondly,
given the value of a single enantiomorph-sensitive
two-phase seminvariant, is it possible to resolve, in a
way consistent with this choice of enantiomorph, the
sign ambiguity of the remaining two-phase enantio-
morph-sensitive seminvariants, i.e. those whose values

differ significantly from O or zn? The analogous
questions for quartets were recently given an affirma-
tive answer (Hauptman, 1977b,c), and the present
paper is heavily dependent on the methods introduced
in this earlier work. In strict analogy with the recently
developed theory of quartets, the clue to the answer
is found in the third and higher neighborhoods of ¢,,
of the first kind (Green & Hauptman, 1978), the ‘trio
relations’ used to define the higher neighborhoods
(compare Hauptman, 1977a), and related probability
distributions.

In P2, the normalized structure factor E,,, is
defined by

E iy = |E i) €xp(igy)

2 2 k k
- 2 4 — i =
(wz)mjzz,fj cos n(h r+ 4) exp 127z(ky, 4),

(1.4)
where h and r; are two-dimensional vectors defined
by

h= (hal)a (1'5)
r;= (xj5zj) (1.6)
and f; is the zero-angle atomic scattering factor of the
atom labeled j; in the X-ray diffraction case the f; are
the atomic numbers Z; and are therefore positive; for

neutron diffraction some of the f; may be negative;
the term o, is defined by

N
0,= ij",
=

and ¢ = 2if h =1=0 and 1 otherwise. Finally, (x;.v»Z;)
is the position vector of the jth atom. Other definitions
and notations used here are in accord with the previous

(1.7)
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papers in this series (Green & Hauptman, 1978;
Hauptman & Green, 1978).

The major results obtained in this paper are (1)
P> the conditional probability distribution of a
structure seminvariant, given the value of another
structure seminvariant and 11 magnitudes |E|, equation
(2.5); (2) P, the conditional probability distribu-
tion of a structure seminvariant, given the values of
two other structure seminvariants and 20 magnitudes
IEl, equation (3.5); and (3) P,, ,, the conditional
probability distribution of a structure seminvariant,
given the value of another structure seminvariant and
24 magnitudes |E|, equation (4.3). Important auxiliary
distributions needed in the derivation of these three are
Pis, Pyys, Pyysy Pyag Pyng Paiyoggs €quations (L5),
(I.15), (1.28), (II.4), (I1.16), (IL.31), respectively.
Among the latter, P, and P,, ,, may also prove to
be useful in the applications.

2. The conditional probability distribution of the

structure seminvariant @, = @, ., — @4 given the

structure seminvariant ¢,, = @, — @,,, and 11
magnitudes | E|

Suppose that @,,(—n < &,, < n) and the 11 non-
negative numbers R, R,, Ri, Ry3,10, Riize0 Ryapps
Ryt Ryyap Ryysis Ri3, Ryp are specified and that
the ordered triple [(#, k1,), (h,kl,), (h,kl,)] is a random
variable which is uniformly distributed over the subset
of the threefold Cartesian product W x W x W of
reciprocal space W defined by (I.1), (1.2), (Appendix I),

023 = Pp3; (2.1)
and

Epgr] =Ry, 1Epy| =Ry 1Epyl =R;,
lEi(h.—hzb.q.%(ll—lz)l= Rli/los lE%(hs—hn),s,%(h—mI = Rsl‘/sm
|E%(n.+hz).q+k,%(h+zz)| =Ry

lE%(hl+hz),q—k,%(l.—lz)| =Rt
lE%(h;+h|).s+k.%(h+lu)| =Ry

lEi’(hJ+hl),s—k.%(13+ll)| = R31/31-’ |E‘h|—h2,0,l|—lzl = Rli’

lEhs—hl.O,I]—lll = RJl-’ (2'2)

where, as usual, g and s are arbitrary non-zero integers.
In view of (I.1) and (1.2)

@12 = Prikty — Phokiz (2.3)
and

D23 = Prokty — Prsks 2.4
are structure seminvariants. The structure semin-
variant ¢@,,, as a function of the primitive random
variable [(Akl), (h,kl,)] is itself a random variable.

Denote by
Pm,u = P(¢12| ¢23’R1’ Rza Rsa R15/10’R3i/30’RlZ/11"RlZ/lf’

RJ 1/31’R31/3 R 15,R3i)
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the conditional probability distribution of ¢,, given the
structure seminvariant (2.1) and the eleven magnitudes
(2.2). This distribution, correct to terms of order 1/N,
is obtained from P,,,, [equation (I.28), Appendix I],
by fixing @,; and multiplying by a suitable normaliza-
tion factor:

1
Pm,u = K—“‘ Q1(¢19 Q5(¢12| ¢23)’

111,11

(2.5)

where Q,(®,,) is given by (1.29) and Q)(®,,|®,,) is
obtained from Q,(®,,,®,,), [(1.30), Appendix I)] by
suppressing those factors independent of @,,, but
dependent on the fixed parameter @,,, so that they are
absorbed by the normalizing parameter X, ,,:

30— 0,0,
0y P, P,,)= CXP{ [—2(—1)5 (—3'3—2:)R3R1R§1—/30

03

0% — 0,0
(3—0-33'_4) (=2(=10°(R}, 5, + R%, 59
2
+ 6(—1)’R3Rl):|cos(<1512 + D)
2_
- (L;ﬁ)kgkf cos 2(P,, + 4,23)}
(21

o, 20,
X cosh 72R3I Vii ¢loy 5 RsisoR311 Ust
%) 0;

20
X Io{oT,; Rsf/soRzl/JIUaf}, (2-6)
2

with V3; and U,; defined by (1.33) and (1.36) respec-
tively; the normalizing parameter X ,, ,,, a function of
the 12 parameters (2.1) and (2.2) and independent
of @,,, is best obtained numerically in any given case.
It should perhaps be emphasized that Py is a
function of the single variable @,, and that &,, appears
as a parameter; despite the superficial resemblance,
P,,;s, in contrast, is a function of the two variables
®,,and P,,.

It should be noted that if &,; # 0 or x, (2.5) is not
an even function of @, (¢f. Figs. 1-5) and has a unique
maximum in the whole interval

(V)]

In other words, once the enantiomorph has been fixed
by a proper choice of the value for @,, (+ 0 or 7),
then the most probable value for @,,, given ¢,, and
the 11 magnitudes (2.2), is given by the unique maxi-
mum of (2.5). The initial estimate for ¢,,, assumed in
(2.5), may be found in terms of magnitudes |E| alone
from probability distributions associated with the
second and higher neighborhoods of the second kind
discussed in the previous paper (Hauptman & Green,
1978). Thus, the most probable value of ¢,, corre-
sponds to that value of @,, which maximizes P,,, ,,.

If &@,; = 0 or = then ¢, has the same value for both
enantiomorphs. Thus (2.5) is bimodal, one maximum
corresponding to one enantiomorph and the second

'—7[< ¢12S7L
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to the other enantiomorph. In this case enantiomorph
selection may be made by arbitrarily specifying the
sign of @,, corresponding to the maxima of P,, ,, in
the whole interval (—z,7). If @,; = 0 or 7 and the
initial estimate of ¢,,, as obtained from magnitudes
|E| alone, is also O or 7, but with a large variance, then
(2.5) may yield a more reliable estimate for the value
of ;.

3. The conditional probability distribution of the
structure seminvariant @, = @, — @ given the

two seminvariants @,; = Qpup, — Phir P14 = Pnun —
@4, And 20 magnitudes

Under the usual assumptions suppose that @,;, @,
(=7 < D,;, D, < ) and the 20 non-negative numbers

R 1>R 2’R 3’R 15/10’RJI/30aR 12/11’R 12/1 T’RJ 173 pRa 1/31"R li’(R33il’)
RvRAi/soaR 45/60’R42/51’R42/5 irRuxel’Ru/s I’R 4iaR43i 32)

are specified, and that the primitive random variable
[(h, k1), (hy kL), (hykly), (hykl)] is uniformly distri-
buted over the subset of the fourfold Cartesian
product W x W x W x W defined by (1.1), (1.2), (IL.2),
(2.2), (I11.27),

023 = Py3 (3.3)
and

0= D, (3.9

Then the structure seminvariant ¢,,, as a function of
the primitive random variable [(h, kl,), (h, kL)), (hykl,),
(h, k1)), is itself a random variable whose conditional
probability distribution given the 22 parameters (2.2),
(11.27), (3.3) and (3.4), P20 = P(P},| P3P R 5 ...
R,3), is found from P, ,, ,,, (IL31), by fixing the value of
&,, and multiplying by a suitable normalization factor.
Thus

1
Pm,zo =~ I?— 0,(92,) 05(D,,! D,;)

112,20

x QY (D, Py, D,4) 3.5

where Q,(®,,) and Q3(P,|P,;,P,,) = QP
®,,1®,,) are given by (1.29) and (I1.32) respectively,
and Q)(®,,|®,;) is obtained from Q,(P,,P,;), (1.30),
by suppressing those factors in the latter which are
independent of @,,, but dependent on the fixed para-
meter @,,, so that they are absorbed by the normalizing
parameter K| ; 5!

302 — 0,0,

0D, Py;) = exp{—Z(—l)’ ( ) R;iR\R3i;5

a3

02— 0,0
X cos(D,, + P,y) — 2(—1)° (—3-—%\)
2

X RyR,(R},5; + R}y 57 — 3) cos(Dy, + ?,,)

PAIRS IN P2,: SEMINVARIANTS IN THE INTERVAL (—=,7)

02— 0,0,
- (—3-052) R2R? cos 2(®D,, + ¢23)}
2

03
X cosh{a—%/2 Ri; V3;}

20,
x Iy o2 Rii/30R31/31 Usi
2

20,
x Iy UTzRJI/JORsx/JIUﬁ >
2

with V,; and U,; defined by (I1.33) and (I.36) respec-
tively.

(3.6)

4. The conditional probability distribution of the

structure seminvariant @, = @, — P given the

structure seminvariant @,; = @4, — @, and 24
magnitudes

Under the usual assumptions suppose that @,; (—7 <
®,, < 7) and the 24 non-negative numbers

R vR 2eR 3’R 15/10’R 3f/30’R 12/1 ],R 12/1 T’RJ 173 l’R3 1/31”R 1isR3i
4.1)
and

R,R 1ira0:R43/50R 4360 R 14/41>R /bR 42/51’R42/5 Razse10

RyspRipRaR 3 4.2)

are specified, and that the primitive random variable
[(h,kl), (hykL), (hykly), (hykl)] is  uniformly distri-
buted over the subset of the fourfold Cartesian
product W x W x W x W defined by (I.1), (1.2),
(11.2), (1.7), (11.27) and (3.3). Then ¢,,, as a function
of the primitive random variable [(h,kl), (h,kl,),
(hykL3), (h k1)), is itself a random variable. The con-
ditional probability distribution of ¢,,, given the 25
parameters (1.7), (I.27) and (3.3), P,,, 4 = P(® ;| D,3,
R,R, ..., R,3), is obtained from P,,, (II.16), by
fixing the value of @,;, integrating (II.16) with respect
to @,, over the interval (—mm) and multiplying the
result by a suitable normalization parameter:

1
Plu,u:K—' Ql(¢l7) Q;(‘pn"pn)

111,24
T

x [ 000 2)d0, @)

where 0,(®,,), 05(®,;|P,;) and 0y(P,,, P, P,,) are
given by (1.29), (2.6) and (I1.17) respectively. The 25
numbers (1.7), (I.27) and (3.3) are parameters of the
distribution and K,,,, is a normalization factor
independent of @,,. The integration of Q,(®,,,P,;,P,,)
is done by numerical techniques since no simple exact
analytical expression has been found. The probability
distribution P,,, ,, is the third major result of this paper
and is analogous to P,,,;, (2.5). Its properties are
similar to P,,, ;, and the reader is referred to the latter
for further discussion.
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5. The applications

The figures accompanying this section show P,
(2.5), and P, ,, (4.3), as functions of @,, in the
domain (—180°,180°) for several representative sets of
values of the parameters on which these distributions
depend. They illustrate their properties for structures
containing N = 100 and N = 300 identical atoms in
the unit cell. The values given for @,; and the various
magnitudes, |E|, have been selected to show optimal
behavior of these distributions and thus to illustrate
the kinds of estimates which may occur in favorable
cases.

5.1 Pyyqy
In Figs. 1-4 it is assumed that

023 = Ohokt — Pyt = 90°5 (5.1

thus specifying the enantiomorph. As described in the
previous paper (Hauptman & Green, 1978), reliable
estimates for ¢,; ~ +90° are obtainable vig the neigh-
borhoods of the second kind, and specifying the sign of
¢, is equivalent to choosing the enantiomorph. Figs. 1
and 2, corresponding to N = 100 and 300 atoms
respectively, show that, for the values of the parameters
listed P,, , has a unique maximum in the whole
interval (—180°,+180°), i.e. the ambiguity of the two-
fold estimate, ¢,, ~ +90°, obtainable from magnitudes
|E| of the second kind alone (Hauptman & Green,
1978), is decisively broken. In fact, as Figs. 1 and 2

N:100
Ri=Ro =Ry =3.0
Rizno = R3730 = Ri2mi = Raum =Ran37=Ra7 = 2.5

_ Rys4i= Rz = 0.
X107 1201 = Riz o P1|1 n
¢ 1s oDD
4 1S EVEN
15.714 @23 =90°
13.96 {
12.224
10.474
8731
6.98
5.24
3.49 4
1.75
: br:
-180 -90 o S0 180
DEGREES

Fig. 1. The probability distribution P,, ,;, (2.5), for the values
of the parameters shown.
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clearly show, there is a single sharp peak at ¢, ~ +90°
with no evidence of a peak at ¢, ~ —90° (which
corresponds, as it happens, to the minimum of P,,, ,)),
so that the value +90° for ¢,, is consistent with the
enantiomorph chosen by setting ¢,; = +90°. Even

23
X107 300 RIRY

Ry =Rz =R =3.0

Ri310 = R3i30= Rigm=R3131 =Ray 5=R% = 25
Riznt=Riz = 0.0
7 IS ODD

2 1S EVEN

$23-90"

15.71

13.96

12.22

10. 47

8.73

6.98

5.244

3.491

1.75

ol

180 .90 0 90 180

DEGREES

Fig. 2. The probability distribution P,, ,;, (2.5), for the values
of the parameters shown.

P1[1,11

X10 Ni- 100
19.20 R,I:R2=R3 =3.0
Ri310 = Ratiao = Razm=Rigii = 2.5
17.45 R3y31 = R3ua7 = Ra3 = R37:=2.5
¢ AND . ARE EVEN
15. 71
$o3=90°
13.96
12.22
10.47
8.73
6.98
5.24
3.49
1.75
¥ @12
-180 -80 o 90 180
DEGREES

Fig. 3. The probability distribution Py, ,,, (2.5), for the values
of the parameters shown.
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when N is as large as 300, the estimate is extremely
reliable in the favorable case shown in Fig. 2.

Figs. 3 and 4 show that reliable estimates for ¢, ~
—45° (as distinct from cardinal point estimates O,

N=300 P
- h,n
X103 R R, :Ry:3.0 m
Rizno = Ratj30 = Rizm=Rizni =2.5
Raim =Raimi=Ra = R3i= 2.5
15.71 |
l/ AND ) ARE EVEN
Gl
13.96 $23 =90
12.22]
10.47
8,731
6.984
5.24
3.49
1.75
) y b
-180 -90 o 90 180

DEGREES

Fig. 4. The probability distribution P, ,,, (2.5), for the values
of the parameters shown.

X103
N=100 P1|1,11 (—)
Re=Ryijzo =3.0 p
- s (----
15.71 Ri=R3= 2.5 hs )
Rizpno =2.0
13.96 Rizm® Rz =Rz 1.0
R3131 =R3y 4 = R1j 0.1
12.224 q AND 3 ARE EVEN
$23 =0
10.47 IN ADDITION,FOR (---),
N
\
R-3 =3.0
g.73] 1| 2320
6.98
5,24
3.49
1.751
-180

DEGREES

Fig. 5.(a) Solid line ( ): the probability distribution P, ,,
for the values of the parameters shown. (b) Broken line (——-):
the probability distribution P,,, lequation (6.1), Green &
Hauptman, 1978] for the values of the parameters shown.

PAIRS IN P2,: SEMINVARIANTS IN THE INTERVAL (—z,n)

180, +90°) are obtainable with suitable choice of
parameters. As before, it is particularly noteworthy
that the symmetry about @,, = 0 is destroyed and the
unique maximum in the whole interval (—180°,+180°)
is consistent with the chosen enantiomorph.

Fig. 5 shows how the 15-magnitude estimate (broken
line ——-) of ¢,, ~ 180° may be sharpened when the
additional information, ¢,; = 0, is available (solid
line ).

5.2, Pyyaa

In Figs. 6 and 7 it is assumed that ¢,; = 90°. Com-
parison with Figs. 1 and 2 shows that, when the 13
additional magnitudes derived from the fourth neigh-
borhood are presumed to be known, a somewhat more
reliable estimate of ¢,, may be obtained via P,,, ,, than
from the analogous distribution P, ,,. However, the
gain in going from P, ,, to P,,, ,, appears to be only
marginal, possibly a consequence of the fact that our
P, 24 contains some, but not all, terms of order 1/N2
It may well be that P, ,,, correct to order 1/N?, a
time-consuming but not impossible task to derive,
would yield a greater improvement.

In view of the discussion in this and the two pre-
ceding papers, it is clear that the two-phase structure
seminvariants may well prove to be an important tool
in phase determination, not only in P2,, but even more
so in those space groups containing more varied

N=100

Ri=Rp =Ry = 3.0

Rizno = R3i/30 = Rigm=Rauar =Ryy =Rt = 2.5

Ra= Ridja0 =Ra3i50= Rads60 *R1asar = Riasat = iz =Ra3= 2.0

Ri2s17 2 Ra3i61= Razie7= RagisirRazis=R12=Ra3 0.0

x1073
F1500D, 315 EVEN

19.20 @23 -90 111,24
17.45
15. 7
13.96
12.22
10.47
8.73
6.98
5.24
3.49
175

di.
-180 -80 o 90 180
DEGREES

Fig. 6. The probability distribution P, ,, [Eq. (4.3)] for the values
of the parameters shown.
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symmetry operators. However, owing to the limited
number of two-phase structure seminvariants which
may be reliably estimated in any given case, it is
anticipated that they will find their greatest use in
conjunction with more general seminvariants and
invariants, particularly in the applications to very
complex structures.

This research was supported in part by Grant No.
CHE?76-17582 from the National Science Foundation
and DHEW Grants No. HL-15378 from the National
Heart and Lung Institute and RR-05716-05 from the
Division of Research Resources.

N=300
R =R; =Ry :3.0

-3
X10 Ri3p10 = Raimo = Rizm= Raym = Ryi=Rai = 2.5

19.20 Ra= Rizrao = Ra350= Ratieo =Riarar =Rigrai = Rz =Ra3 =2.0
Riz17 = Ra3/61=Raziei= Rz =Ra2ss1 = Razsni = Raz $0.0
15.71 ¢ 1S ODD, 3 IS EVEN P
4)23 =90 1[1,24
13.96
12.22
10.47
8.73
6.98
5.24
3.49
1.75
— 2P
-180 -90 o] 90 180
DEGREES

Fig. 7. The probability distribution P,,, ,4 [Eq. (4.3)] for the values
of the parameters shown.

P15=
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APPENDIX I
Probability distributions derived from the third (15-
magnitude) neighborhood of ¢, of the first kind

I.1. The joint probability distribution of the 15 struc-
ture factors whose magnitudes constitute the third
neighborhood of ¢,,

Suppose that a crystal structure in P2, consisting of
N atoms, not necessarily identical, in the unit cell is
fixed and that the ordered triple [(h, kl), (h,kL),
(hykl})] of reciprocal lattice vectors is a random
variable which is uniformly distributed over the subset
of the threefold Cartesian product W x W x W of
reciprocal space W defined by

(h, — 10,1, — L) =0 (mod w,) (L.1)

(hy— by, 0,1, — 1) = 0 (mod o). (1.2)

Let g, r and s be arbitrary non-zero integers. Then the
15 normalized structure factors

and

Ehlkll’ Ehzklz’ Eh:kls’ E%(hl—hz),q.’i(ll—lz)’
E%(hz—hs).r,%(lz—ls)’ E%(hs—hn),s,%(ls—ln)’
E%(h|+hz),q+k,’f(1|+lz)’ E%(hwhz).q-k,’f(lwlz)’
2t hy) ok, 324 1) $haths),r—k, 32+ 13)
E%(h3+h|),s+k,%(ls+ll)’ E%(h3+ln,s kY-

Eln—hz.(),h—lz’ Em_h,,o,[;_l,a (I~3)

as functions of the primitive random variable [(h,&l)),
(h, kL), (hykl)], are themselves random variables.
Denote by

PlS :P(Rsz’Rs,R15/10>Rz§/zo>Rsf/30,R12/11’R12/11"st/2v
R 2320R; 3Rt ¢l,¢2,¢3, ¢l§/10’¢25/205 ¢3f/30"p12/1 it
P 121155 P23/20P2321 P31/31 P1sats S135525:537) (.4

the joint probability distribution of, respectively, the
magnitudes and phases of the first 12, complex-valued,
and the last three, real-valued, structure factors (I.3).
Then following the pattern of the result in Appendix I
of the first paper in this series (Green & Hauptman,
1978), it is clear that

Ehz—hs,o.lz—h’

R R,R;R li/loRzi/zoRsi/soR12/11Rlz/listmst/szsl/slRsl/sf

(271: 372 7[12

_[p2 2 2 2_ 2. 2. 2 : 2 2
X exp{ (Rl + R+ Ri+ Ri50 + R3550 + Riijz0 + R}y, + R, 1+ R0, + RY 07 + R2

2_ 2_
Siz | S5

2 2 2 03/2

2
sum + Riysi

S\ 2
+ —3—') + &5 [R,Rleicos(tbl — @) + R,R, S,5co8(P, — D) + R;R, S35 cos(D, — D))

+ (DR Ry3,,0R 31, €08(DP; + P30 — Pryns) + (—1FR R 5,0 R 7 cOS(P, — Pi310 + Prani)
+ (=1)"Ry R3320 R3320 €08(Py + Pozjng — Poyor) + (=1 Ry Ry35,00R,3,1 OS(D, — D3 0 + D320
+ (—1FR3R;5,30R3, 5, COS(P; + Pyijng— Payy) + (—DFHR R3550 Ry 51 CoS(P; — Dy, 50 + Dy, 31
+ RyR 5/10R 1511 COS(Py + Piz/0 — Prajiy) + (1FR,R 510 R 151 COS(P, — P50 + P27
+ R3R1320R 53121 COS(Py + D300 — Prs ) + (=1 Ry Ry500 Ry i COS(P,— Dysng + Py i)
+ Ry Ryif30Ry15, COS(P + Piijzg— Pyy3) + (1R Ry Ry 57 COS(Py — Dyigg + By 50
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1y (1) (1) 362 — 0.0
+ 5 SRz — D+~ SR — 1) + —5— S3iRips — D] —2\= - 204
2

X [(-—1)"R1R2‘R§5,10 cos(®, — @,) + (—1)"R,R;R%5, cos(P, — D) + (—1F Ry R, R} 3 cos(P; — )]

2
ot—o0,0,

_2(

a3

0.2
+ (—=17°R;R (R3,,5; + R3,,37) cos(@; — @,)] + 6 (—3—;——

x cos(®@, — @,) + (=1 R,R, cos(P; — @))] — p
2

I 1 1
+ RZR?cos(2®,—29)] + O i 1+0 ~)

where O(1/N"?) consists of those terms of order 1/N'/?
or higher which will make no contribution of order 1/N
or lower to the desired conditional probability distri-
butions to be derived. The term O(1/N) consists of
those terms of order 1/N or higher in which the terms
of order 1/N are independent of the @’s or contain only
even powers of the S’s.

1.2. The joint conditional probability distribution of the
three phases Oy 415 Cuyiy Pty 8iveN the fifteen magni-
tudes in the third neighborhood of ¢,,

In the first paper of this series (Green & Hauptman,
1978), the third neighborhood of the first kind of ¢,
was defined to be the magnitudes of the set of 15 struc-
ture factors (I.3) where g, r and s are arbitrary non-zero
integers. Associated with this set of magnitudes are
three phases @, ;> @pur» Puuay having indices satisfying
(I.1) and (1.2).

Assume that a crystal structure in P2, consisting
of N atoms, not necessarily identical, in the unit cell
is fixed and specify the 15 non-negative numbers

R1’R2’Rs>R1i/|o’Rz§/20’R3i/3o>annpRlz/II’Rzyanzs/zfa

R31/319Rs|/3i9Rli,Rzi,R3I- (1-6)
Suppose finally that the ordered triple [(A, ki), (h, kL),
(h;kl))] of reciprocal lattice vectors (h,kl,), (h,kl,),
(hykl}) is a random variable which is uniformly
distributed over the subset of the threefold Cartesian

product W x W x W of reciprocal space W defined
by (I.1), (I.2) and
IEpy,! =Ry VE ) = R lElnkl;l =R,
|E%(m—m),q,%(1.—lz)| =Ri3100 lEﬂm-h;),r,%uz-lz)l = R3320
lE'}(hs—hl).s.%(lx—ll)l = Rii/30 |E{v(h|+hz).q+k,%(ll+lz)| =Ry
'E%(h.+hz),q—k,%<h+h)l = Rlzufa
LEy sy raktinery! = Razps
E\ ey r—kdiizriy! =
%(h3+hx),s+k,§lls+lx)| =Rs5
VE sy s-k e ! = R31ibs
Ehz—h;,O,lz—lJI =R23_’ IEhS—hl,O,IJ—III = Rﬁ'

23218

IEh.-hz,O,h—lz' =R3

1$mn

2
(a3 — 0,0,
3

) [(=1)7R,R,(R%,,;, + R%,, ;1) cos(P, — D)) + (=1 R, Ry(R3;5, + R3;57) cos(P, — D;)

fz"“) [(—1)°R, R, cos(®, — ®,) + (—1YR, R,

2

) RZR2cos(29, — 2®,) + RIR1cos(2P, — 2d,)

(1.5)

The three phases ¢,/ @pu» Puwr, are then functions
of the primitive random variable [(h, kl), (h,kl,),
(h,k1)). Denote by Py,,; = P(@,,P,,P,IR ,R,, ..., Ry})
the joint conditional probability distribution of the three
phases @, 40 Phus Pruae 8iven the 15 magnitudes (1.7).
The three real structure factors S3, S,3, S;; are related
to their respective magnitudes and phases R ;,R,3,R5;
and @;,®,;,P,; by means of

§,5=R,5cos @,3,

S;;=R,;c08 D3
S31'=R

37 cos Dy3, (1.8)

where ®@; = 0 or 7 according as S,; is positive or
negative, @,; = 0 or z according as S,; is positive
or negative, efc. In short, the three phase variables
D5, P,;,P,; are discrete, each one taking on only
the two values O or n. Then Py, is obtained from
P, by fixing the values of the 15 magnitudes (1.7),
integrating P, with respect to the nine continuous
phase variables @ with multiple subscripts, summing
over the two possible values, 0 or 7, of the three discrete
phases, @5, @,;, ®D,;, and multiplying by a suitable
normalization factor:

2n

P

Pls d¢]§/10 oo APy 51
(1.9)
Using techniques which are by now standard (Haupt-

man, 1975a,b, 1976; Green & Hauptman, 1976) and
employing

3115 =

350,500,500 ,=0 &,5,1,.0.. B, =0

D A;cos(® + a)=X cos(® + &), (L10)

12
X= [Z A;A;cos(a; — aj)] s
iJ

X exp(id) = Z 4, exp(iay), (1.11)
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P, ., is found to be

1 30?2 — 0,0,
P, = exp{— 2(%) [(=1)R, R, R334 cos(®, — ®,) + (—1)"R,R,R35,59 cos(®, — &)
3115 2

03 a.
+ (=1PR;R,R}; 5 cos(P; — @)] -2 (Tzi) [(=1)7R,Ry(R},,,, + R}y,7) cos(P, — @,)

2

+ (=1YR,R4(R%;,5, + R3;,5p) cos(P, — @,) + (—1)°R;R,(R2, 5, + R,,51) cos(@, — D))

02— 0,0
+ 6(’—0%2—‘) [(=1)?R,R, cos(®, — D,) + (—1)"R,R, cos(P, — ®,) + (—1)*R, R, cos(®, — &,)]

2 __
_ (-—"3 Ufzo“) [R}R}cos(2®, — 29,) + R3R} cos(2®P, — 2®;) + RIR} cos(2P, — 2‘1’1)]}

2

X Z exp{ m'z[( 1)7(R%,,0— 1) + 2R, R, cos(®P, — P,)] cos d>,2—}

¢12=0

3/2

X { 23[( 1Y (R%,50— 1) + 2R, R, cos(®P, —
d’u 0

;)] cos ¢23}

X Z ex { m“[( 1¥(R%,50— 1) + 2R, R, cos(P;, — @,)] cos <D3,~}

O3i=0

27

0

2n 20
X CXP{OJ,Z 2320 R23/21 X35 €08( D355, + 523/21)} dPy;:

0

2n {20
X f eXp

0

In view of the integral formula

2n
f expld cos(8 + &)Idb = 2n1,(4) (1.13)
0
and
Z exp(4 cos ¢) =2 cosh 4, 1.14)

=0

the desired joint conditional probability distribution of
Onuts Prorts Prwss Biven the 15 magnitudes (1.7) of the
third neighborhood, is found to be correct to terms of
order 1/N,

1
P3I15 =I{_ Ql(¢l’¢9 Q2(¢|’¢2’¢3)

3115

(1.15)

where
—2(—1)R,R
09,9, = eXp{ _”‘_3_1'_2[(303 — 0, 0.4)R%i/10

2

+ (a3 — 0,0,) (R}, + RY,,7) — 3(02 — 0,0,)]

3
R3i/30R;1/31 X1 €08( Dy, 3, + &33y) dqjumf exp{ 3,2R31'/30R31/31'X3TCOS(‘pami + 531/31')} dd;, 51

2

20 20,
X f exP{ 3Rlz/loR 211 X153 €08(P 51y + 612/11)} dd,,,, JCXP{ =72 Rizo R 1211 X 13 €08(D 07 + éum)}d‘plzm
o3

0
2n

20
f exp{ 3R23/20R23/21X23 cos(P,;,,1 + 523/21)} d®y;,¢
0

0

2n
20,

(1.12)

02— 0,0
x cos(P, — P,) — (%)R}R% cos 2(®, — <D2)}
2

o3R 5 20,
X cosh{?zl— Yn'} 10{072 RiznoR X1z
2 2

20,
x Iy 03/2R12/10R12/11'X15 ) (1.16)
2

36l —o0,0
0,(9,,0,,®,) = exp{— 2 (%‘)
2
X [(—=1)'R,R;R%;,,, cos(P, — @)

03— 0,0
+ (—=1)°Ry R, R%;, cos(®, — &,)] — 2 (-La—j—?)
2

x [(=1Y R,R4(R3;,5, + R3;57) cos(P, — D)
+ (—1°*RyR(R},5, + R, ;1) cos(P, — @))]
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2
+6(03—M) [(—=1)Y R, R, cos(®, — D,)
o3
ol—o, 04)
o3

X [R2R? cos 2(P, — @;) + RIR? cos 2(P, — ¢,)]}

o;R,;3 o3R,1
X cosh{ 03/223 Y23} h{—;g—/;' Y3;}

203 20'3
x I, ;372 Ryipo Ry Xz ¢ Iy 3/2 R,5,20R 2321 X3

20 20

X1 {03,2 R31/30R31/31X3T} I{OJ,iR 1/30R31/3IX3i}a

117
1) + 2R, R, cos(®, — ®,)], (1.18)
Y,; = [(=1)(R%,,0 —) + 2R,R; cos(®, — @I, (1.19)
Y, = [(=1)*(R%,5 — 1) + 2R, R, cos(@, — @,)], (1.20)
X,3=[R? + R + 2(—1)°R, R, cos(®, — ®,)]"2, (1.21)
X,5=[R2+ R} + 2(—1YR,R, cos(®P, — ®,)1'?, (1.22)
X;;=[R2+ R? + 2(—1)°R,R, cos(P, — ®)]"?, (1.23)
and where K, s is a suitable normalization factor
independent of &,, ®@,, ®@,. Since P,,, is a function
of the structure seminvariants @, — &,, &, — @,
&, — @, and since P, — @, = —(P, — D,)— (D, — D,),
the distribution P;,s leads directly to the joint con-
ditional probability distribution P,,,; of the pair of

structure seminvariants @,,, @,;, given 15 magnitudes,
as shown next.

+ (—1YR;R, cos(®; — D)) — (

Yli = [( l)q(leo

1.3. The joint conditional probability distribution of the
pair of structure seminvariants ¢, = Qpu — Phors
P23 = Oput, — Pnus» given the 15 magnitudes in the
third neighborhood of ¢,,

Assume that the ordered triple [(h,k&l), (h,kL),
(h3kI)] of reciprocal lattice vectors is uniformly
distributed over the subset of the threefold Cartesian
product W x W x W of reciprocal space W defined
by (I.1), (1.2) and (1.7). Then the two structure semin-
variants

Q3= Onskty (1'24)

as functions of the primitive random variable [(h, kl,),
(h,kL), (h;kl)], are themselves random variables.
Denote by P,,;s = P(@,,P,;|R,R,,...,R;7) the joint
conditional probability distribution of the pair ¢,,,
@5, given the 15 magnitudes (I.7). Then P, is
obtained from P, ;, (I.15), via the transformations

12 = Pnut, = Phaki Dhakt, —

®,=0,— b, (1.25)
D= D,— D, (1.26)
—,— Py, =D,— D, 1.27)

PAIRS IN P2,: SEMINVARIANTS IN THE INTERVAL (—z,n)

and is found to be

qus = Ql(‘plﬁ Qz(‘pw‘pzs)
2115

where Q,(®,,) is obtained from Q,(®,,®,), (1.16), by
replacing @, — @, in the latter by @,,; and Q(P,,,P;,)
is obtained from Q,(®P,,P,P,) (1.17), by replacing
@, — &, and @, — P, in the latter by P,; and —P,, —
®,, respectively. Thus

(1.28)

—2(—1¥R,R
0,(2,)= exP{_3—l_2 (B0} — 0,0)R};540
2
+ (6} — 0,0)(R},,, + R}, — 3(03 — 0,0))]
2__
03—0;7;04 R2R2cos 2¢12}

2

20,
X COSh{om Rz V”} 10{ 72 Rizno R UlZ}
20,
X I 3/2 12/10R12/1IU15 s
02

302 —
0y(P1,Py3) = exp{* 2 (03—3%)
03

x [(=1)"R,RyR%;,,5 cos Dy, + (=1 R, R, R%;59

X cos @,,—

1.29)

02— 0,0
x CoS(P; + Pyl — 2 (—3 pe 2 4) [(=1)R;R;(R3;.2,
2
+ R3;57) €08 @y3 + (—1F Ry R (R3, 5, + R, ,57)

3 0204)
o3
X [(=1)'R,R, cos @,; + (—1)*R,R, cos(D,, + D,,)]
0,0,

(@
03

x cos 2(P,, + ¢23)]} cosh{03/2 Ry V,g}

0; 20'
X cosh{—§72 Ry Vﬁ} Io{_,“z Ry30R53/m Uzi}
2 2

20
X I{ 372 R23/20R23/21'U2§} I{ 3,32 R31/30R31/31U3I}
0

0?

x cos(P,, + D,))] + 6 (

) [R2R2cos 2@,, + RZR?

20,

x I 3,2R3|/30R31/3TU31 ) (1.30)
Viz=[(=1)(Riz0— 1) + 2R, R, cos ®,,], (L.31)
V3= [(=1Y(R%;,5— 1) + 2R, R, cos &,,], (1.32)

Vii=l(=1P(R3;,3;0— 1) + 2R, R, cos(D,, + D,,)],

(1.33)

U,;;=[R?+ R%+ 2(—1)"R,R, cos @,,]'2, (1.34)

U,;=[R2 + R2 + 2(—1YR,R, cos ®,,]"?, (1.35)

Ui =[R2+ R? + 2(—1) R, R, cos(P,, + D,,)], (1.36)
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and K, is a suitable normalizing parameter indepen-
dent of @,, and @,,.
In general, (1.28) has two maxima in the domain

< D,<1 137
(1.38)

related to each other by reflection through the origin,
since (1.28) is unchanged when @,, and &,, are both
replaced by their negatives. One maximum identifies
the most probable values of the pair ¢,,, ¢,; corre-
sponding to one enantiomorph; the other the most
probable values of ¢,,, ¢,; corresponding to the other
enantiomorph. The reader is referred to Hauptman
(1977b), equation (2.13), for further discussion.

— =P, <7

APPENDIX 11
Probability distributions derived from the fourth (28-
magnitude) neighborhood of ¢,, of the first kind

II.1. The joint conditional probability distribution of

the four phases Qyuy Oniis Pns Phuto 8iven 28
magnitudes

Using the probabilistic background described
previously, the derivation of the joint conditional
probability distribution of the four phases @,
Onpt» Prwts Pruie 8iven the 28 magnitudes in the fourth
neighborhood of ¢,, of the first kind follows the lines
already given in Appendices 1.1 and 1.2. In addition
to the 15 non-negative numbers (1.6), the 13 non-
negative numbers

R 4’R 1&/40’Rai/509R45/60aR 14/41’R 14/4 R 42/5 R 42/5 l_’R43/61’
(I11.1)

are also specified. The primitive random variable is
the ordered quartet [(h, kl,), (h,kL), (h,kly), (h kl,)) of
reciprocal vectors which is assumed to be uniformly
distributed over the subset of the fourfold Cartesian
product W x W x W x W defined by (1.1), (1.2),

R43/6 I"R li’Rﬁ,R,;j

(hy—hy, 0,1, —1,) =0 (mod ), (11.2)
(1.7) and
IEhsid = Ras 1 Eyguonaiteeto) = Ruivao
lEi—(ha—hz).u.'}(la-lz)l = R42/50’ 'E%(m h3) v, 5l Iz)l = Ry3/600

%(h|+h4),t+k,%(h+14)| = Ryyan
Hhi+ha -k 3+t = Nt
Yhathd)u+k,dla+12)' = L4251
Hhat b)) u—k 3+ 1)) = La2/510
et by vk et 1) = L4361
hat b, v-k e+ 1) = L4361
hi—ha,0,li—-1a — 14 IEha—hz.O,h—lzl =R,

LEp py0,00-1s! = Rz (11.3)

Denote by P, = P(P,P,,P5,P,IR,...,R,3) the joint
conditional probability distribution of the four phases
Onito Pkt Phwty Pruss given the 28 magnitudes (1.7)
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and (II.3). The distribution, correct to terms of order
1/N, turns out to be

Ql(¢l’¢2) Q2(¢l’¢2’¢3) Q3(¢1’¢2’¢3’¢4)v
(1L.4)

where Q,(®,,P,) and Q,(P,,P,,P,) are defined by
(1.16) and (1.17) and

2
04(9,,0,,P;,P,) ~ eXP{_ e (303 — 0,0
2

X [(—1)1R1R4R%E/40 cos(®, —
+ (=1)*R,R,R%,, cos(P, —

1
P .= —
M °¢

4128

P,)
P,)

2
+ (=1)"R,R; R334, cos(P, — @) — p (0} — 0,0,
2

X [(=1YR R R4y + Riyap) cOS(P; — D)

+ (1R Ry (R,5, + R, 57) cos(P, — D,)
+ (=1)’R,Ry(R}; 5, + Riy 61 cOS(D, — &)l

6
+ ) (O'g'-
0;

+ (—1)*R,R, cos(D, — PD,)

0,0) [(-=1)'R,R, cos(®, — &,)

1
+ (=1)’R R, cos (®,— ®,)] — 0—3(0§ — 0,0,
2

x [R}R} cos 2(P, — @,) + RZR3 cos 2(®, — D,)

+ R2R2cos 2(P, — ¢3)]}
o;R
42}COSh{ ;3/; : Y3 }
2

xcosh{ 2 Y14}cosh{ 33/;2

20, 20,
x I, 03,2 R14/40R14/41X14 I, 0_3,2 Rizs0R 144X 3
2

2

20, 20'3
x Iy o RizsoRasiXazg 1o 3,2 Ri5is0Razsi X3
03

20, 03
x I 3/2R43/60 4361 %43 3,2 R60Ra36i X430

(11.5)
1) + 2R, R, cos(®, — @,)], (11.6)
1) + 2R, R, cos(®, — Py, (IL.7)
Y5 =[(=1)"(R%e — 1) + 2R, R, cos(®, — @)}, (IL.8)
X;=[R?+ R? + 2(—1)R,R, cos(®, — @)1, (I.9)
X=[R2 + R2+ 2(—1)"R, R, cos(®, — ®,)]"2, (IL.10)
X,;;=[R%+ R?+ 2(—1)’R R, cos(®, — @,)]', (IL.11)

where ¢, u and v are arbitrary non-zero integers and
K, ;s is the appropriate normalization factor. Since
P, 5 is a function of ¢, — ®,, ¢, — ¢, and @, — P,,
(11.4) leads directly to the condmonal probablllty dlStl‘l-
bution of the three structure seminvariants ¢,,, ¢,,
and ¢,,, as shown next.

Y=l Rz —
Y42 - [( 1) (R42/50
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I1.2. The joint conditional probability distribution of
the three structure seminvariants ¢, = Qpuy — Poir
023 = Phakt; — Phskiy and ¢4 = Qput, — Pnugo 8iven the
28 magnitudes in the fourth neighborhood of ¢,,

Employing the usual probabilistic background as
described previously, the three structure seminvariants
©12 0,3 (1.24), and,

014 = Oniktn — Phakte (IL.12)

as functions of the primitive random variable [(k, kl,),
(hykl,), (hykL,), (hykl)], are themselves random vari-
ables. Denote by

Pig= P(¢!2,¢23,¢,4|Rl,Rz,...,Rag)

the joint conditional probability distribution of ¢,,,
023 014 glven the 28 magnitudes (I.7) and (IL3).
Then P, is obtained from P, (IL4), by means of
the transformations (1.25)—(1.27) and

®,= D — D, (IL13)
b,—Py=D,— D, (11.14)
D+ Dy — Py =P, — P (I1.15)

Hence, the joint conditional probability distribution of
P12 P23 P14o given the 28 magnitudes (1.7) and (11.3),
is found to be
Py = Ql(‘plz) Qz(‘plz,‘pzs) Q3(¢12’¢23’¢14)’
(I1.16)

where Q,(®,,) and Q,(P,,,P,;) are given by (1.29)
and (1.30) respectively, and Q,(®,,, P,;,P,,) is obtained
from Qy(®,,9P,P;9P,), (IL5), employing the trans-
formations (I1.13)—(I1.15):

K3|28

2
0P, Py, D)) ~ exP{_ ! (303 — 0,0,
2
X [(=1)'R, R4 Riz /40 c0s D4 + (—=1)*Ry Ry Ri3/50
x cos(@,, — P,)) + (=1)"R,R;R35,6
2
¢|4)] - a‘g (0§ -

x [(—=1)R, R4(R24/41 + R%A/dl_) cos @,
+ (—1)*R,R,(R}y5, + R}ys7) cos(Py, — Py,)
+ (—I)VR Ry(R%6; + Ry, 6D cos(Dy, + Doy — D))

x cos(P,, + D,; — 6,0,)

+ ;g (62— 0,0,) [(=1)R,R,cos D,
+ (=1)*R,R, cos(P,,— P,)

+ (=1)’R R, cos(P,, + ®,; — D)) — é (62 —0,0,)
x [R?R?cos 2@, + RiR}cos 2P, — P,,)

oo

o0;R;
V,,z)co h( 7 V43)
2

+ R2R2 cos 2(P,, + D,y —

e

o;R
“V

3/2

X cosh(

PAIRS IN P2,: SEMINVARIANTS IN THE INTERVAL (—7,7)

20, R

7 RigmoRasai Ui
0

2
x I, (—03

0.%/2

RlZmoR 14741 Uli) 0(
20 20
3 3
x I (72 Ryz50Ras1 Uss 0( Ryzs0Razsi Uz
0> a3?

20 20
x I (3,2 R43/60R43/61U4§) (3/;R43/60R43/6l 43),

(IL1
where
Vi=[(=D"(R%0— 1)+ 2R R, cos®,,], (I1.18)
V= [(=1)¥(R3550 — 1) + 2R, R, cos(P,, — D)),
(I1.19)
V= = [(—=1)"(R33,60— 1) + 2R, R, cos(P, + P,;
- 9,), (11.20)
,;=[R?+ R? + 2(~1)'R R, cos @], (IL.21)

u. 5= R} + R3 + 2(=1)"R R, cos(®,, — @)1,
(11.22)

=[R2+ R+ 2(—1)’R Ry cos(D,, + ®,; — D )|
(11.23)

11.3. The joint conditional probability distribution of

the two structure seminvgriants ¢, = Qpuy, — Pratr P23 =
Chutr — Pniae given the structure seminvariant ¢, =

Opit, — Phats and 24 magnitudes

Suppose that @,,(—n < ¥, < 7), the 24 non-
negative numbers

R vR 2>R 3’R 1i/10’R 25/20’R3D30’R 1271 1aR 12/1i’R23/21’ R23/2f’

Ry 50 RyanRi3:R 3R (11.24)
and
R 4R 350 R 360 R a2s51R 4251 R 43619 R 43615 R 4R a3
(11.25)

are specified and that the ordered quartet [(h ki),
(h, kL), (hy kL), (h,kl,)] is a random variable which is
uniformly distributed over the subset of the fourfold
Cartesian product W x W x W x W of reciprocal
space W defined by (I.1), (1.2), (I1.2),

Q4= ¢143 (11.26)
(1.7) and
|E gl = Ry, lE%(hA—hz),u,%(h—lz)' = R, 3500
Hha—h) 313 = 1437600
| g+ k) ut+ ki) = Rayse
%(huhz),u—k,-}(lulz)l = Ryy/51>
Yhar ko), v+k, 3! T Lazser
Yhath3), v-k, 3+ 1) = Razs61>
ha—h2,0,la—12' — 1442 E’N—hs.o.la—l}l =R4§. (11.27)
In view of (I.1), (I.2) and (IL.2),
12 = Pty — Phakir (I1.28)
023 = Pnakiz — Phskiy (I1.29)
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and
D14 = Phr, — (I1.30)

are structure seminvariants. Then ¢, and ¢,, as
functions of the primitive random variable [(k, k),
(h, kL), (hykly), (hykl,)], are themselves random
variables. Denote by

:P(q)lz’q)zsl‘prsz’---’Rn_)

the joint conditional probability distribution of the pair
912 0,3 given @, (I1.26), and the 24 magnitudes (1.7)
and (IL27). Then P,, ,, is found from P,,s (11.16),
by fixing ®,, and multiplying by a suitable normalizing
parameter:

Dhakts

P2|1,24

Q1(Py) 0)(D,,P,) O3(P P, ),
(I1.31)

where Q,(®,) and Q,(P,,,P,;) are given by (1.29)
and (L1.30) respectively, Qj(®,,,P,,|P,,), obtained
from Qy(®,,,P,;,P,), (I1.17), by suppressing those
factors independent of @,, or @,,, but dependent on the
fixed parameter @, so that they are absorbed by the
normalizing parameter K, ,,, is given by

P2|1,24 =

K211,24

2
03(D,, P51 Py,) = exp{—— e (303 — 0,0,
2
X [(—1)”R4R2R§5,50 cos(P,, — qu)
o+ (_I)VR4R3R§§/50 COS(q)lz + ¢23_ (pu)]
—0,0,) [(=1)*R,R,(R}y5, + Riys7)

x cos(P,, — D,,)
+ (Z1)’R Ry(R3y 6, + Ry 47) c0S(Pyy + Py — D))

2

6
+ e (03 —0,0)[(-1)“R,R, cos(P,, — D,,)
2

+ (=1)’R,R;cos8(P, + ®,, + D,))]

24]

1
-5 (62— 0,0,) [RZR} cos 2(P, — D,,)

2
+ R}R}cos 2(P,, + D,, — d)”)]}

3042
xcosh( 72 v, ) oh( 7 V45)

20, 20
XI( 32 Rn/so 42/51U42') 1 ( 3,;R

42/50R42/5TU45)

20, 203
X I ( 3/2 R43/60R43/61 U43 3,2 R43/60R43/61 U4§)’
(I1.32)

with V5 V3, U, U, defined by (I1.19), (I1.20),
(I1.22), (I1.23) respectively, and the normalizing
parameter K, ., a function of the 25 parameters
(11.24)-(11.26) and independent of @,, and @,,, is best
obtained numerically in any given case. It should be
noted that P,, ,, is a function of the two variables
@, and @,, and that @, is a parameter of the distribu-
tion. Despite the superficial resemblance, P, is, in
contrast, a function of the three variables @,,, ®@,, and
D,
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